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Episode 14 
Thank you for subscribing to Episode 14 of the HP Security Research 
SecurityBriefing. In this briefing we discuss file geometry visualization and 
clustering experiments on malicious files using the R language. 

Malware files clustering based on file geometry and visualization using R 
language 

 
The daily explosive growth of malware samples over the last decade or so presented many antivirus companies with a 
problem - how to efficiently and accurately process and label such a large number of incoming files. With the advent of 
cloud-based services, Big Data and increasing computational power, many put their hopes in machine-learning classification 
algorithms. In this paper we attempt to describe a hands-on approach and show the basic principles used in the 
classification of files. Intuitively it pays to note that variants of a malware family are generally derived from a similar 
codebase and exhibit similar file structures.  This notion, when applied through freely accessible tools and visualization 
techniques used in R language, helps us to analyze and label a set of incoming files. It also provides a basis for further 
research and experiments in malware identification and processing. The following paper presents a hands-on approach, 
coupled with numerous examples of malware visualization and clustering using R language and other freely available tools.  
 

Background – PE files 
The vast majority of executable files in Windows are in Portable Executable file format (PE file format). 
A PE file format has a fairly regular structure. This requirement is imposed by an OS loader and the OS execution framework. 
The OS loader requirements might be viewed as a multi-dimensional gatekeeper or filter which only accepts objects 
conforming to its prescribed patterns. This standardization creates an opportunity for us to examine possible similarities 
amongst files based on their “geometrical” properties, that is, the properties which ensure the file’s structure conforms to 
the OS loader requirements.  
 
The PE file structure is very well documented in numerous publications, beginning with the official Microsoft specification1, 
but there are numerous popular articles uncovering the ins and outs of the specifications (see the Further reading section at 
the end of this report for details).  
 
The file is organized as a flat stream of data. At the beginning of the file there are a number of structures called headers. 
The first structure is called an MS-DOS header, which is a tribute to the old days of DOS. This is a stub which gracefully exits 
a file if it is run in an unsupported PE file mode - the real mode. It is worth noting that normally, PE files are structured and 
compiled to run in the protected mode of the OS, where each section of memory has its own descriptor governing its access 
by running processes. The MS-DOS header is followed by a PE file signature - a sequence of 4 bytes which marks the 
beginning of the PE file structures. The PE file signature is followed by the PE file header and by an optional header. 
Following this are the section headers and actual sections bodies. The file is concluded by various miscellaneous regions of 
information such as relocation, the symbol table, line numbers, and string table data. The headers contain many pieces of 
unique information which can be used in the identification of the file. 

1 Microsoft PE and COFF Specification http://msdn.microsoft.com/en-us/library/gg463119.aspx  
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Figure 1 Cursory PE file format layout 

Research in the field 

There have been a number of studies into this area and extensive research done in the classification of malware samples 
based on various machine learning algorithms and selected features of files.23 Most of the algorithms require training and a 
test set of samples. Such algorithms, when properly tuned, are fully automated and efficient. However, they are prone to 
failures when targeted by malware writers.  This paper explores an interactive approach which involves PE file attribute 
visualization. It also examines an unsupervised learning clustering technique which removes training sets and brings human 
interaction to a process of classification, hence creating greater flexibility and intelligence in the analysis and classification of 
malware. 
 

Our study - Malicious file clustering and visualization 

Would any characteristics from a given set of files be suitable for a clustering algorithm? If so, this information could later be 
used to distinguish new or previously unseen malicious files under examination. The following initial set of file attributes 
was selected for consideration:   
• Entry point address 

• Number of sections 

• Code size 

• Image size 

• The virtual and raw sizes of the first, second and third sections.  

2 Selecting Features to Classify Malware 
http://2012.infosecsouthwest.com/files/speaker_materials/ISSW2012_Selecting_Features_to_Classify_Malwa
re.pdf 
3 Malware Detection Using Perceptrons and Support Vector Machines, 

http://thor.info.uaic.ro/~ciortuz/PAPERS/ALL/athens.malware.pdf 
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It was decided that it would be optimal to create a visual representation of the resulting attributes in a graph that allowed 
mutual aggregation of this data in a two dimensional space. A parallel coordinates graph appeared to work well in this case. 
Using the R language and its framework was found to be good for the visualization.  R is a language and environment for 
statistical computing and graphics and as such, it provides a wide variety of statistical techniques such as linear and 
nonlinear modelling, time-series analysis, classification, clustering and more. The R language also encompasses powerful 
graphical visualization capabilities and is highly extensible.4 

 

Method 

A number of different visualizing and clustering techniques were applied to several sets of known malware family files, and 
their efficacy for meaningfully grouping these files was assessed. These analysis methods were also applied to a set of 
clean files for comparison. 
 
A note about the tools: The intention of this study was not only to be able to cluster malicious files using file geometry and 
visualization - but to share research in such a way that other researchers could replicate these experiments. As such 
software tools that were open source or available under the GNU general public license were selected for this purpose.  

 

Case studies – The shapes of Gamarue and Ursnif 

Gamarue – Parse and plot example 
Before we can apply visualization and clustering, we need to be able to parse a PE file and extract its attributes to a readable 
file format. There are a number of products available on the market which can be used to parse a PE structure and extract 
PE file attributes to a readable format. One of them is PeStudio5, which produces an XML file containing attributes in batch 
command line mode. This is convenient since the XML file can be parsed by any number of products for visualization, such 
as our choice, R language. (3) As an example let’s look at a number of executables detected by various security products as 
Gamarue. Gamarue is a moderately widespread malware family that spreads via removable drives and allows attackers to 
remotely control victim’s machines. 
 
Running PeStudio on our set of files yields a set of XML files, each containing attributes for a file (Figure2). 
 

 
Figure 2 Batch mode of PeStudioPrompt.exe 

For a quick glimpse at the attributes we can use XML Explorer. It provides a convenient way of quickly navigating through an 
XML file and viewing its attributes. 
 

4 The R Project for Statistical Computing  - http://www.r-project.org/ 
5 PeStudio - http://www.winitor.com/ 
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Figure 3 XML Explorer view of the XML file data 

 
Using R language, we can read the XML files that contain the file attributes to a data frame. We then use these data sets to 
produce a parallel graph. A parallel coordinate graph is a chart that has a number of vertical vertices each representing a 
single variable. Such visualization allows us to gauge the similarity of files based on the selection of the attributes chosen 
for each vertex. The initial set of attributes was selected because they could be closely coupled with code properties such as 
entry point addresses, numbers of sections, code size, image size, and the virtual and raw sizes of first, second and third 
sections. These attributes are normally available in most PE files and would not require additional complex processing, such 
as unpacking or behavioral analysis of files, or analyzing the streams of data in file sections. Processing a set of PE files 
which are detected as Gamarue worm by at least one AV product with the aforementioned selection of attributes yields the 
following parallel graph. 
 

 
 
 



 
Figure 4 Parallel graph based on a number of files attributes - Gamarue worm family 

Each line in this graph represents a file. Each vertex represents an attribute of a file that we decided to use for the parallel 
graph visualization. While the graph gives a sense of files clustering based on selected attributes it makes it difficult to 
visually trace each individual line - especially when the number of files, and hence lines, increases. In this case it is helpful to 
employ an interactive type of parallel graph where a group of lines can be highlighted manually. For instance, interactively 
selecting a group of lines with a similar CodeSize shows how these lines fare together in comparison to other attributes. 
 

 
Figure 5 Interactive Parallel graph, selected files with similar CodeSize - Gamarue worm family 

It shows that the CodeSize selection criteria create a fairly closed coupled cluster, which also includes files with similar 
EntryPoint values, VirtualSize1, SizeOfRawData1, VirtualSize3. But there are small discrepancies in VirtualSize2, 
SizeOfRawData2, SizeOfRawData3. Alternatively when selecting files with a similar Virtual Size value of the 3rd section 
(VirtSize3) the cluster is somewhat dispersed but does include a larger number of files. 
 

 
 
 



 
Figure 6 Interactive Parallel graph, selected files with similar Virtual Size of the third section value - Gamarue worm family 

It has to be noted when comparing these results, even though the selected files used in this study come from a single 
malware family (Gamarue), they show great diversity when trying to cluster them based solely on the files’ geometry. 
 
It also became apparent during this experiment that the selection and order of the file attributes used for the construction 
of a parallel graph are very important for the quality of the visualization, and that they might be different for each individual 
malware family. The example provided and the easy availability of the tools used allows for a quick set up and ability to 
experiment with any given set of files. Provided the output of a file parser can be rendered in XML or any other readable 
format that can be processed by R (normally flat files in ASCII) a great number of attributes can be examined and used for 
such visualization. 
 

Ursnif – Objects clustering example 
Another way of looking at data visually is to apply objects clustering. This is an unsupervised learning technique that looks 
at an attribute space and tries to identify groups or patterns within the attributes. 
 
Let’s examine malware based on the Ursnif family. Ursnif is a widespread trojan that steals sensitive information. The trojan 
can affect 32-bit as well 64-bit Windows platforms and normally carries components (such as DLLs) in its resource section 
(which it uses accordingly). This feature of its behavior should provide some interesting file geometry.  Looking at a set of 32 
files detected as Ursnif by various antivirus products, we can produce an interactive parallel graph (as described above) that 
shows possible clustering based on only a few properties.  
 

 
 
 



 
Figure 7 Interactive parallel graph of Ursnif family - highlighted files are grouped by VirtualSize of section 2 

The basic principal of clustering is to group objects so that their attribute similarity would be high within a group and low 
across multiple groups.  There are a number of algorithms available within the R langauge based on various clustering 
methodologies such as partitioning, hierarchical, density-based and grid-based approaches. Each of these methodologies 
has a number of distinct features and could be advantageous for each particular case of a data frame. 
 
Let’s consider K-Means clustering as one of the most popular and simple unsupervised learning partitioning methods. To 
understand how the K-Means clustering algorithm works, for the sake of simplicity, imagine a sand box which has a handful 
of marbles thrown into it. How do we find clusters which would fairly well cover the marbles? First we would need to define 
how many clusters we anticipate. The K-Mean algorithm requires this information as a parameter. Then we randomly 
choose the locations of cluster centers in the sandbox. We compute the distance from each marble to a corresponding 
center. Then we calculate a new center to which the squared error sum of distances from each belonging to the previous 
center marbles is smaller.  Once the new centers are computed, we select a new set of marbles belonging to each new 
center and continue computing the next centers based on the new marble selections. We then continue until the newly 
computed centers are exactly the same as the old ones. At this point we could say that we have found all the centers for the 
clusters.  
 
As previously mentioned, one of the distinct characteristics of the K-mean algorithm is that it requires a predicted number of 
clusters as an argument. This is where the parallel graph visualization described above might come in handy.  For instance, 
looking at a set of files from the Ursnif family, the parallel graph gives us a sense of how many clusters we can expect within 
a set. We might also possibly judge the quality of the PE file attributes we decided to use for clustering. Looking at Figure 7 
we can anticipate that there are possibly 2 to 3 clusters in the Ursnif pool of files when grouping is based on the selected file 
attributes.  
 
Applying K-mean clustering with the Ursnif data frame we have: 

ClusteringResults <- kmeans(ursnif_files_attributes, 3) 

 

where 3 is the proposed number of groups. Within the ClusteringResults we could see the following available components: 

cluster, centers, totss, withinss, tot.withinss, betweenss, size, iter, ifault 

 

Below is a brief description of what each of them mean in our particular case: 

• cluster - is a vector of integers with the size of a total number of clustered objects where each integer indicates a cluster 
number to which each object is allocated. In our example the above clustering produced the following vector: 
 
> ClusteringResults$cluster 
 [1] 2 3 3 3 3 3 3 3 1 3 3 2 3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 
 

 
 
 



This means that the overall number of elements is 27; the first element belongs to cluster 2, the second to cluster 3, and 
the 9th to cluster 1. Cluster 1 has only one element. Cluster 2 has 4 elements and so forth. 

• centers – is a matrix of group centers. In the above example the group centers are: 

 

 
Figure 8 Centers for each of the attribute space within clusters 

The centers are computed according to the method’s clustering algorithm. 

• totss – total sum of squares 

> ClusteringResults$totss 

[1] 7.472679e+12 

• withinss – vector identifying a within cluster sum of squares, one data point per cluster 

> ClusteringResults$withinss 

[1]          0   31174032 5696360435 

Note: 0 indicates that the first cluster consists of only one element. 

Using a cluster sum of squares, we could better identify a number of possible clusters by computing its sum for each 
number of predicted clusters and plotting the data on a graph.  

wss <- (nrow(data_cluster)-1)*sum(apply(data_cluster,2,var)) 
for (i in 2:5) wss[i] <- sum(kmeans(data_cluster, centers=i)$withinss) 
plot(1:5, wss, type="b", xlab="Number of Clusters", ylab="Within groups sum of squares") 

In this case we are looking for a distinct line bend which would point out a number of best possible clusters in a data frame. 

 
Figure 9 Sum of squared errors screen plot 

It looks like 2 or at most 3 is the number of clusters we need to consider. 

 
 
 



• tot.withinss - Total within cluster sum of squares 

• betweenss - The between clusters sum of squares 

• size - The number of points in each cluster, for instance, in our case that would be 3 clusters with 1,4 and 22 elements 
respectively 
 

> ClusterResults$size 

[1]  1  4 22 
 

• iter - The number of outer iterations 

• fault – Integer indicative of possible algorithm problems 

 

To visualize the clusters we can use a clusplot() function, available in R language, which draws a two dimensional clustering 
plot on the current graphic device. 

 
Figure 10 Cluster Plot based on attributes of files of the Ursnif family 

As can be seen from the example above, file attributes, even in a limited fashion, might provide a solid basis for clustering. 
As we noted earlier, file geometry is very susceptible to various file packers, packages and self-extracting archives. All of 
this has to be taken into account when preparing a set of files for processing. Let’s increase the number of attributes and 
see how it affects the grouping.  

 
Adding only four distinct attributes such as SizeOfInitializedData, CheckSum, SizeOfStackReserve and SizeOfHeapReserve, 
immediately shows that there are more possible clusters available when looking at the sum of squared screen plot. The 
distinct bend extends itself towards four possible cluster centers. 

 
 
 



 
Figure 11 Predicted number of clusters 

Running the K-means partitioning algorithm on four possible cluster centers yields us a higher granularity of groups and 
allows us to look deeper into the samples’ malware family division. For instance, cluster 3 (red shaded oval area) on Figure 
10 in the current partitioning is now split into two subgroups, see Figure 12. These results show that the number and the 
quality of attributes play a very important role in quality of clustering outcomes and should be carefully considered - 
perhaps individually - for each family. 
 

 
Figure 12 Clustering plot based on the extended set of attributes - Ursnif malware family 

Two malware families file comparison example 
Let’s consider K-mean clustering of a set of files based on our example two malware families - Ursnif and Gamarue. 
A sum of squared errors plot shows a distinct bend at around 10 possible clusters which can be considered within the 
presented set of files. 

 
 
 



 
Figure 13 Predicted number of Gamarue and Ursnif clusters based on squared sum of errors 

Running the clustering algorithm with the 10 clusters as an argument shows good separation between the clusters. See 
Figure 14. 

  
Figure 14 Clustering plot of two malware families - Gamarue and Ursnif 

The cluster sizes show that there are 10 clusters with the object numbers of 1, 13, 2, 13, 4, 2, 11, 4, 2 and 2. 
 
> ClusterResults$size 
[1]  1 13  2 13  4  2 11  4  2  2 
 

 
 
 



Let’s take a look at how the different malware families fell within the created clusters. First we create a table where the 
names of the analyzed malware families are associated with each file represented by its attributes. Then we apply this 
information to the clusters created earlier.  
 
> table(data_cluster$Name, clus_results$cluster) 
 
Table 1 - Gamarue and Ursnif clusters 

 1 2 3 4 5 6 7 8 9 10 
Gamarue   1 0 2 13 0 0 11 0 0 0 
Ursnif         0 13 0 0 4 2 0 4 2 2 
 
As we can see from the table above, we have 10 clusters where most of the Gamarue family files position well within 
clusters 4 and 7. Most of the Ursnif files are located within clusters 2, 5 and 8 and are well separated from the Gamarue 
family files. The larger number of clusters occupied by the Ursnif family probably means that the set of files that the 
malware is represented by is greatly affected by its geometry and might contain various variants and sub-groups of the 
same family. Gamarue, on the other hand, is tighter coupled by the represented set and clusters well. 
 
These results once again highlight the problem of attribute selection for the set of files. It shows that most of the time it 
would be insufficient to rely on just the geometric properties of a file and to achieve decent clustering one would have to dig 
deeper into the malware characteristics - perhaps relying on a dictionary of imported or exported APIs, behavioral 
properties, an entropy of file sections or more. 
 
Clean file comparison example 
Now, let’s throw a couple of clean files from the Windows system into the mix. Running a squared sum of errors plot shows 
us a distinct bend around 12 to 13 clusters. 

 
Figure 15 Squared sum of errors plot for Ursnif, Gamarue and a clean set of files 

 
 
 



Running the K-mean clustering algorithm on 12 centers gives us a quite a dense group distribution. 

 
Figure 16 Cluster plot for a mix of Ursnif, Gamarue and clean files 

Looking at the specifics of the file distribution within generated clusters we see that Gamarue is quite well separated from 
the Ursnif family. However, the clean set - while separate from Ursnif - overlaps quite significantly with Gamarue. 
 
Table 2 - Gamarue, Ursnif and clean file clusters 

                 1 2 3 4 5 6 7 8 9 10 11 12 
    clean    9 0 0 2 1 1 0 13 0 0 4 8 
Gamarue  0 0 0 0 0 0 0 24 0 1 0 2 
    Ursnif     2 4 4 0 0 0 13 0 4 0 0 0 
 

Conclusion 

What we managed to show during this study is that an interactive approach to malware file analysis, with the use of 
visualization techniques and tools freely available online, could potentially aid in file attribute selections for machine 
learning algorithms and automated file processing. We showed that the K-means unsupervised learning clustering 
algorithm could be used for file grouping and labeling provided that the file attribute space is carefully considered, perhaps 
individually for each family. We found that the selected attributes were sufficient to separate two malware families into 
clusters but fell short when we brought in a clean set of files. The clean set of files overlapped significantly with the 
Gamarue malware family while stood clear of Ursnif clusters - this is partially explained by the fact that Ursnif file geometry 
is quite specific and is not commonly found amongst clean files. It also shows that when comparing parallel graphs of file 
attributes of Gamarue and Ursnif (see Figure 5 and Figure 7)  Gamarue attributes are less tightly coupled for the selected set 
and cover a larger space of values which are also found amongst clean files.  This shows that file geometry alone might not 
be sufficient for accurate grouping and that other sets of attributes need to be explored and considered. Such attributes 
could be the results of static and behavioral analysis of code, section entropies, imported and exported APIs and 
combinations of the above. However, the methodology provided here might allow for the selection, testing and assessment 
of possible attributes for the clustering of malware families.  

 
 
 



Further reading 

Microsoft PE and COFF Specification 
Peering Inside the PE: A Tour of the Win32 Portable Executable File Format 
An In-Depth Look into the Win32 Portable Executable File Format  
 
Learn more at 
hp.com/go/hpsr 
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